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l. Introduction:

This report concerns the stabilizability of second order bilinear systems,
x = Ax + u(Dx + b) (1)

where A, D ¢ szz' and x, b ¢ RZ. While a large literature devoted to the structural
properties of such systems has developed over the past decade [1,2,3], it is fair to
say that little is understood regarding the qualitative behavior of trajectories of
(1). Recently, several authors have investigated the stabilizability of systems. of

the form

xeaxt 3 u (D;x + b)) (2)
i=1

in RP [4,6,7]. These papers derive sufficient conditions and construct comtrollers
to stabilize systems which meet specific and quite restrictive requirements. In [6]
and [7] a constant pure quadratic feedback law is shown to stabilize (2) when A has
purely imaginary eigenvalues, m = 1, and b = 0. 1In [4], it is demonstrated that a
constant linear and quadratic feedback law forces trajectories of (2) into an
arbitrarily small bounded neighborhood of the origin assuming the non-intersection
of the varieties ;TP(Dix + bi) = 0 (for some positive definite symmetric matrix, P)
over a region of interest, and a controller d -=ign is given when Di = bicT.

It is our opinion that a significant understanding of bilinear systems will
not be possible until more systematic analysis has been accomplished. Accordingly,
in this report we concentrate on a simple problem in some detail. Specifically,
we give necessary and sufficient conditions for the existence of a constant linear
feedback controller to stabilize (1). Even given the limited scope of this problem,
it 43 safe to say that the statement of necessary and sufficient c;nditionn is
possible only because of recent results in the stability of quadratic systems
developed by the authors {5). This paper depends heavily upon that work.

Problem Statement:

2
Characterize the properties of the triple (A,b,D) such that for some c € R ,

for u : cT!. the resulting second order closed loop system
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. A
x = AXx+ CTxDx Ac =A 4+ bcT (3)

is globally asymptotically stable (g.a.s.).
This problem is completely resolved by Theorem 1, stated below. In the
sequel we assume that b ¥ 0, and D ¥ 0, and we will adopt the notation Ix,yl to

indicate the determinant of the 2x2 array [x,y].

Theorem 1: The triple (A,b,D) is stabilizable under constant linear state feedback
if and only if either
(1) D has complex conjugate eigenvalues and IDx,xI has the same sign as
IAD-lb,bl. 1f [AD-lb,bl = 0 then the special conditions given in
Proposition 2, below (section 3), hold;
or (11) D is singular and its non-zero eigenvector is a stable eigenvector of A.
If D is singular with a unique real eigenspace, then the special conditions

given in Proposition 4, below (section 4), hold.

After briefly reviewing the properties of the scalar analogue of system (1),
wve will present some preliminary results and notation in Section 2, then discuss
condition (1) of Theorem 1 in Section 3; condition (ii) in Section 4; and finally
provide a proof of Theorem 1 by way of summary, in Section 5. A construction for
a stabilizing linear constant controller is provided in the proof of each case, and
reviewed in the summary.

It is instructive to consider equation (1) when A = a, D=d, b, x, u € R,
which yields the closed loop system (when u 4 cx) :
v

; = (ac + cdx)x where a, s a + be.
Claarly, when d ¥ 0 this system has an unstable equilibrium at x = -uc/cd, and
the origin is never g.a.s. for any choice of ¢ ¥ 0. Bence when a > 0, (a,b,c) is Kma

never stabilizable under constant linear feedback. The restrictive conditions of

Theorem 1 seen more intuitively reconcilable when compared to this situation in one ;

\.
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dimension, where an unstable system can never be stabilized by u & cx.

2. Preliminary Definitions and Results:

Evidently, system (3) 1is an autonomous quadratic differential equation. 1In

order to characterize the stabilizability of the triple (A,b,D) under constant

linear state feedback, we must, therefore, know something about the stability of

systems of the form

x = Ax + clxDx (4) |

where A, D ¢ 8?:2’ cCE RZ. In a previous paper [5], we have given necessary and
sufficient conditions for (4) to be g.a.s. To facilitate presentation of these
conditions and later results it is useful to introduce a few notational conventions,
all developed at greater length in that paper 1

Defining the skew-symmetric matrix J & s we have x, 4 Jx, tha
1 0

orthogonal complement of x, and yTxl - yTJx = |x,y|, where the last symbol denotes
the determinant of the array [x,y]. If a ¢ Rz, let (a) 4 {x ¢ R?|x = ga, a £ R}.
Let A denote the symmetric part of a 2x2 matrix, A. If A is singular then A = ab’
for some a, b € Rz, and 1if As = P then xIPx = 0 1ff x is orthogonal to either a or

b.

For ease of discussion, we divide the class of 2x2 real matrices into three
sets based upon properties of their eigenvectors as follows: A 1is said to be
nodal 1if it has at least two distinct eigenvectors; x-critical if (x) is its unique,
real eigenspace; and focal if it has no real eigenvectors. Since |Ax,x| = 0 iff
x is an eigenvector of A, that matrix 1s focal, x-critical, or nodal iff |Ax,x| is
sign definite, semi-definite, or indefinite, respectively. Since |Ax,x| = xTJAx.
the identical sign conditions on [JA]B specify whether A is focal, nodal, or x-critical,

2
as well. Notice that e is an eigenvector of A 1iff [JA]. - [etaT]. for some a ¢ R .

Some further properties of 2x2 real matrices are presented as facts in Appendix B

(and referred to as such throughout the sequel). Finally, we will say that two
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symmetric matrices agree in sign if they are sign definite or semi-definite, and
their non-zero eigenvalues have the same sign.

Using this termivology, we may quote the result of [5] as follows.

Theorem 2 [5]: System (4) is g.a.s. if and only if
(1) A has eigenvalues with non-positive real part;
| (11) [Jn]s and [DTJA]s agree in sign;
(111) one of the following two mutually exclusive conditions holds:

(a) D is focal, and D-lA is either focal or x-critical, where

x € (c,) 1ff || 4 0;
(b)) D is x-critical and singular, |A] # 0, and A.ID = YD for some

scalar, Y. )

The two distinct cases listed under condition (iii) form a natural framework
for the presentation of stabilizability conditions. In Section 3 we discuss the
properties of the triple (A,b,D) when D 18 focal, corresponding to condition (iii.a),
above. 1In Section 4 we consider the case where D is singular, corresponding to

condition (1ii.b), above. It ig an immediate consequence of Theorem 2 that we

need consider no other cases.

Lemma 1: If D is not focal and not singular, then system (1) cannot be stabilized

by constant linear state feedback.

Proof: 1f D is nodal and non-singular, then [JD]s is indefinite, and (3) violates
condition (i1) of Theorem 2 for any ¢ € Rz. If D is x-critical and non-singular,

. 2
then (2) violates conditiom (1ii) of Theorem 2 for any c e R . [

As a further consequence of Theorem 2, we must choose a linear control law,

T T
u H ¢ x, for system (1) such that [D JAc]. is sign definire or semi-definite de-
pending upon the sign of IJD].. Thus, we may naturally inquire when a vector
ce R? exists such that DTJAc - DTJA + DTchT has a definite symmetric part.

This question i{s resolved by the following lemma and its corollaries.
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2x2 2 2
Lemma 2: For anyQCle and g € R, there exigts a ¢ € R such that [Q*SCT].ao

T T
if and only if g, Q8, > 0, and [Q + gc'] > O if and onmly if sLTQsL > 0.

Proof:

(1) Necessity: If ngle < 0 then g T[Q + scrlssl - xLTQsL <0. 1If slTQsL -
then gLT[Q + scT]sgl =0,
(11) Sufficiency: If gLTle = 0, then Q = (;ng]s for some d € Rz. Hence, if
c 5 -d + vg for v € R+. then [Q + gcT]s = [ng + gcT]B = Ygsr > 0. Note that any
other choice of ¢ leads to an indefinite form for [Q + gcT]s-
1f BLTQGL > 0 then (g, P E:g)'rQ(gl Y eg) > 0 for some € > 0 by continuity.
Then choosing c e Yg where Y > ﬂ%l-qn > 0 we have xT[Q + gcT]x - 92(08 + SL)T

2.2

[Q + gcT](ag + gl) = az(cg + gl')TQ(ag + gl) +pa Yng which is positive for

la| < e. since l(ag + gl)TQ(Og + 81)| < (02 + Za)HQ|ng + ngle we have
o?(ag + sl)TQ(us +g)+ p2a?ygTg > Dz[slTQsl + Y°2ng - % + 20)1qg"g)

a
2 leslTQsL-!- 20( = - l)llQﬂng] > 0 for |a] > € by choice of y. [

Corollary 2.1: If D is focal then there exists a c € IR2 such that [J])]s and [DT-IIA‘:]s

agree in sign if and only if |Dx,x| - |aD 2b,b| 2 O.

T.T T
Proof: Assume [JD], > 0. According to Lemma 1, [D'JA_] > 0 1£f [D'Jb] "D'JAID'JB]

T T,.T T 2 -
3 0. But [D'Jb], D'JAID'Ib], = b3 DI [D'JALID Ib = Dl %5TIADp according to

Fact B.1. Hence, [DTJAcls > 0 1€£ 0 € b'JAD b = |AD"1b,b| since |D|? > 0. The
identical proof holds for [Jl:)]s < 0. 0O

-1 s . T
Corollary 2.2: If D is focal and |Dx,x| * |AD "b,b] > 0, then, if Yy ¢ R, c = yD'Jb

implies [JD]' and IDTJAC]. agree in sign when |y| is large enmough and sgn Y =

- .jn xT[JD].x. In this case D-lAc is focal.

Proof: This follows directly from the conatruction of g in the proof of Lemma 2,

when Q s nTJA. )
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Corollary 2.3: If D is focal and IAD-lb.bl =0 (b¢ 0) then [JI)]s and [l)TJAc]s
A -
agree in sign iff ¢ = DTJ(-d + vb) where d is the other eigenvector of AD 1 and

* - -
sgn Y = sgn xT[JD]sx. In this case D lAc is D 1b ~critical.
Proof: Again, this follows from the proof of Lemma 2. [

We may now proceed to consider the cases listed above in correspondence with

the conditions of Theorem 2.

3. Stabilizability When D is Focal:

According to Lemma 2 and its corollaries, if D is focal, then a c exists such that
conditions (11) and (11i.a) of Theorem 2 bold, vhen [AD 'b,b| and [ID]_bave the
same gign. Surprisingly enmough, if |AD.lb,b| ¢ 0, .the same sign condition assures
the stabilizability of (A,b) in the sense of LTI pole-placement and, therel;y. of
(A,b,D) in our semse. The following proposition exploits this coincidence, !
specifying stabilizability conditions which make implicit use of this fact.**

Proposition 1: If D 1s focal and IAD-lb,bI ¥ 0 then there exists a c ¢ Rz such

that (3) 1is g.a.s. if and only if IAD—lb.bl - |Dx,x| > 0.

Proof: (1) Necessity: According to Corollary 2.1, condition (ii) of Theorem 2
holds only if |nx.x| . |AD.Lb.b| > 0 under the assumptions above.

(11) Sufficiency: Since |An']'o,b| « |Dx,x| > O implies condition (ii) and
(11i.a) of Theorem 2 according to Corollary 2.2, when ¢ e yDTJb vhere sgn y =
sgn xIDx = sgn |Dx,x| and |y| is large emough, it remains to show that (i) holds
under this choice of feedback.

Since tr{a_} = tr{A} + yblJTDb = tr{a} - y|Db,b] and v|Dx,x| > O for all

t 33 lz. we have tr{A} < O when IYI is large enough.
*

If AD 1 is b-critical, then there is no "other eigenvector" and the result
follows with d € (b) as seen from the proof of Lemma 2. However, if AD™" is nodal,
then we require d ¢ (b) in order for this construction to work. Accordingly,;in
the sequel, the terminology other eigenvector shall designate d ¢ (b) if AD is
nodal, and d ¢ (b) 1f AD™* 1is b-critical.

#* The explicit demonstration that |AD b,b| ¢ |Dx,x| > 0 implies LTI stabiliz-
ability 1is given in Appendix A as a matter of related interest.
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Since IACI = |A| + |bcT| + tr{JchTJA} (Fact B.2)

la] + yb JAITD 3B

(A] + leleJAD-lb (Fact B.1)

Al + D] |AD BB,
wve have lAcI > 0 when |y| 1s large enough, since |D| > O (D is focal) and
yIAD-lb.bl > 0 since sgn y = sgn |Dx,x| = sgn ]AD-lb,bl.

But tr{A} <O, |Ac| > 0 implies A_ stable. 0O

If D is focal but b is an eigenvector of AD-l then, according to Lemma 2 and its
corollaries, D-IA cannot be made focal by any choice of c. By Corollary 2.3, there
exists a unique c € R2 such that condition (ii) and (1ii.8) of Theorem g hold,
however, there is no guarantee that (A,b) is stabilizable in the sense of LTI
pole-placement. Hence, the conditions for stabilizability in this case are more t

restrictive, and are given as follows.

-1
Proposition 2: Let D be focal, |AD “b,b| = 0 (b # 0) and let d be the other eigen-

-1 * 2
vector of AD = with eigenvalue §. Then there exists a c ¢ R such that (3) is

g.a.s8. 1f and only if either
-1
(1) AD = is b-critical and |A| > 0;

or (1) Ab"} is nodal and §|d,b| = %%+ .

Proof: (1) Necessity: Assume [JD]s > 0 without loss of generality. By Theorem 2,
it is necessary that [DTJAC] > 0, and this is true 1ff c & D'J(~d + yb) (vhere

sgn v = sgn |{Dx,x|) according to Corollary 2.3, in which case D-IAc is D-lb-criticalo
Hence, by condition (ii1i.a) of Theorem 2, it is necessary that c, e(D-lb) iff

|‘c| ¥ 0. By constructionm, c = JDTJ(-d 4+ yb) = |n|n'1(d - yb) (Fact B.1), hence

c, ;(n-lb) 1ff d ¢(b). Thus, we require IAcl > 0 1if AD-l is b-critical, and

See the footnote to Corollary 2.3.
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1 is nodal. Since tr{JchTJA}

0= |Ac| = |a| + er{JTcblIA} (Fact B.2) if AD
= Ipl(ap~2(-d + vb) ,b| = -|D|6]d,b], condition (11), above, follows.

(11) Sufficiency: By the fo:egoing construction of c, all requirements of
Theorem 2 have been met except the demonstration that tr{Ac} < 0. But tr{Ac}
= tr{A} - tr{bd"J'D} + y tr{bb’J'D} and the last term is equal to —y|Db,b| < 0
since sgn Y = sgn |Dx,x| for all x. Hence tr{Ac} < 0 when |y| is large enough. [

4. Stabilizability When D is Simgular:

1f D is nonsingular and not focal, then system (3) violates Theorem 2 as
shown by Lemma 1. However, if ID[ = 0, then for some d, e ¢ Rz, D= deT. Hence,
chDx = eTxD'x. and by choosing ¢ € (dl), D' in system (2) is d-critical and
singular (if e € (dl) then D is d-critical and singular to begin with). Therefore,
when D is singular, it is possible to stabilize (1) in some cases. Before presenting
these cases, we state the following useful result. Y

Lemma 3: If D is singular and d-critical, and [A| > 0, then condition (1i) of

Theorem 2 holds iff Ad = ad and a < O.

Proof: Since x D JAx = |Ax,Dx| and x IDx = |Dx,x|, condition (11) is equivalent to

-1.. T T T.2 -1
0 < |Ax,Dx| + |Dx,x| = |A| + |x, A "dd x| - |dd ‘x,x| = (& "NT[A] « |x,A 7] - [d,x]

wvhich is true, assuming [A| > 0, if and only if 0 g lx,A-ldl . |d,x|. The latter

is possible if and only 1if A-ld =ad, a < 0. O

In general, wvhen D = deT, d ¢ (el). hence D 1s nodal as well as singular.

In this case stabilizability conditions are quite simple to state.

Proposition 3: I1f D = deT is nodal then there exists a ¢ ¢ R? such that (3) is

g.-a.8. 1ff Ad = ad, a < 0.

Proof: (1) Necessity: According to condition (ii) of Theorem 2 we require c € (dl)

>

or ¢ = BJd for D' to not be nodal. 1n this case condition (i1i.b) applies and we

require [A_| # O vhich necessitates IAcl > 0 according to condition (i) of Theorem 2.
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Hence condition (ii) holds iff Acd = ad, 8 < 0 according to Lemma 3. But Acd = Ad
by construction of ¢, hence Ad = ad, a < 0.

(11) Sufficiency: Since ¢ s 8Jd satisfies conditions (11) and (1ii) of

Theorem 2, 1t suffices to show that (i) holds for suitable B. Since tr{Ac} = tr{A}
T
+ g{d,b| and (ACI = |A| + gb JAd = |A| + aB|d,b||g| large and sgn g = -sgn |d,D|

implies Ac stable. (J

1f, however, d ¢ (el) then a much greater choice of ¢ is available and

stabilizability conditions are more complex.

Proposition 4: If D = ddlr then there exists a c € Rz such thatr (3) is g.a.s. 1ff

either

(a) b is an eigenvector of A in the null-gpace of D and (A,b) is a
stabilizable pair (in the sense of LTI theory).

or (b) there exists a y € R such that

Ab
b,

il -y gt 0

-1
Proof: According to conditions (i) and (11i.b) of Theorem 2, |Ac| > 0 and Ac D = yD,

tr{al - : +y<0

T
hence A d = vd, or 0 = | d,d| = [Ad,d] + c7dalb,al. 1£ la,bl = 0 then we require
0 = |ad,al = |ab,b], hence (A,b) is not controllable, and we must have LTI stabiliz-
ability, in which case any ¢ such that A, is stable meets the conditions of
Theorem 2. This accounts for case (a), above.
e ‘T 1
If ld.bf ¢ 0 then |Acd.d, 0 1ff ¢ (Ydl A dl) TET;T (for some vy ¢ R).

T

T
d “Ab Ab.d 4 "Ab

a b

(Fact B.2) = |A] - v +%h:%l , giving rise to the condition in (b), above. [
»

. ) K
Bence erlA } = erla} -~ 4y = exlA) - STOE 4 v, and A | = Al -y =
N
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‘ 5. Summary and Conclusion:

The central result of this paper is the statement of necessary and sufficient
conditions for the stabilizability of (1) under constant linear state feedback as
given by Theorem 1 in the introduction. As a formal proof of that theorem we may
summarize the results of Sections 2-4.

If D is focal and lAp-lb.bl ¢ 0 then (3) is g.a.s. 1ff sgn IAD-lb,bl = §gn le,xl
according to Proposition 1 (Section 3). In this case a stabilizing controller is

given by c e YDTJb, 8gn Y = sgn le,x|, and IYI suitably large. 1If IAD~1b,b| =0

and d is the other eigenvector of AD-l then a stabilizing controller given by
c 4 DTJ(-d + Yb), sgn Y = sgn |Dx,x| may be chosen iff the conditions of Proposition
2 (Section 3) hold. Thus, if D is focal, condition (i) of Theorem 1 is necessary
and sufficient for stabilizability.

1f D is singular and nodal then (3) is g.a.s. iff d, its non-zero eigenvector,
18 a stable eigenvector of A, according to Proposition 3 (Section 4). Im this
case ¢ e BJd, sgn B = - sgn |d,bl, |B| suitably large is a stabilizing controller.
I1f D is singular and critical then (3) is g.a.s. 1iff the conditions of Proposition
4 (Section 4) hold. If D is b-critical and those conditions are met, then any c
which stabilizes (A,b) in the sense of LTl pole-placement, stabilizes (1). If D
is d-critical, and b ¢ (d) and the conditions are met then c e (Ydl ~ Ale) TE%ET
is a stabilizing controller. Thus, if D is singular, condition (ii) of Theorem 1
is necessary and sufficient for stabilizability.

If D is neither focal, nor singular then (3) is never g.a.s. according to
Lemma 1 (Section 2). Thus Theorem 1 lists complete necessary and sufficient

conditions for stabilizability, as claimed.
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E Appendix A
1 k
Stabilizability of (A,b,D) and (A,b) ]

-1
In Section 3 it is shown that |Dx,x| * |AD b,b] > 0 implies (A,b,D) may be

stabilized by c & YDTJb. This result, given as Proposition 1, implicitly makes
use of the following.

Fact: If |Dx,x| . IAD-lb,b] > 0 then (A,b) is a stabilizable pair.

Proof: Without loss of generality assume |Dx,x| > O, and apply an identical proof
for the case |Dx,x| < 0. If |Ab,b] ¥ O then (A,b) is controllable, and hence

2
stabilizable. If |Ab,b] = O then Ab = Bb B ¢ R and Ad = &d for some d ¢ R, & ¢ R.

e R, Y, ¢ 0 since D-lb £ (b).

If 4 ¢l(b) then D.lb - Yld 4+ v_.b where v_,Y

2 12
Hence ID-lb,bI - ID-lllb,Db[ - -ID-1{|Db,b[ < 0 siace [D-ll > 0. Moreover

|p"1b,b| - ylld,bl + 12|b,b| - ylld,bl. But |An‘lb,b| - yllAd,bl + yzlAb.bl
= v,6la,b| = '-—;,frl |Db,b| > 0 1£f § < 0 in which case (A,b) is stabilizable.
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If d € (b) then § = B8 and if e € Rz is the generalized eigenvector of A -
i.e. Ae = ge + b - then we may write D-lb = yle + Yzb to get the identical result

as above. [

Appendix B

Some Useful Properties of 2x2 Matrices

The following two properties are used extensively in Sections 2-4, and follow
0o -1
from direct computation. Define J s + Then
1 0

-1 1 .T.T 1 L T.T
ole - J =
Fact B.1. |D| ¢ O implies D ToT J'p ToT JD'J

Fact B.2. |a+ Dl = |a] + [D] + er{s"Daa}

= |a] + Dl + eris"atIp)







